Yeast actin patches are networks of branched actin filaments
نویسندگان
چکیده
منابع مشابه
Yeast actin patches are networks of branched actin filaments
Cortical actin patches are the most prominent actin structure in budding and fission yeast. Patches assemble, move, and disassemble rapidly. We investigated the mechanisms underlying patch actin assembly and motility by studying actin filament ultrastructure within a patch. Actin patches were partially purified from Saccharomyces cerevisiae and examined by negative-stain electron microscopy (EM...
متن کاملMechanical properties of branched actin filaments.
Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leadi...
متن کاملActin Filament Severing by Cofilin Dismantles Actin Patches and Produces Mother Filaments for New Patches
BACKGROUND Yeast cells depend on Arp2/3 complex to assemble actin filaments at sites of endocytosis, but the source of the initial filaments required to activate Arp2/3 complex is not known. RESULTS We tested the proposal that cofilin severs actin filaments during endocytosis in fission yeast cells using a mutant cofilin defective in severing. We used quantitative fluorescence microscopy to t...
متن کاملMovement of cortical actin patches in yeast
In yeast, actin forms patches associated with the plasma membrane. Patch distribution correlates with polarized growth during the cell cycle and in response to external stimuli. Using green fluorescent protein fused to capping protein to image actin patches in living cells, we find that patches move rapidly and over long distances. Even patches in clusters, such as at the incipient bud site, sh...
متن کاملGrowth velocities of branched actin networks.
The growth of an actin network against an obstacle that stimulates branching locally is studied using several variants of a kinetic rate model based on the orientation-dependent number density of filaments. The model emphasizes the effects of branching and capping on the density of free filament ends. The variants differ in their treatment of side versus end branching and dimensionality, and as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 2004
ISSN: 1540-8140,0021-9525
DOI: 10.1083/jcb.200404159